Supplementary Materials for Fast genotyping of known SNPs through approximate k -mer matching

Ariya Shajii, Deniz Yorukoglu, Y. William Yu, & Bonnie Berger[∗]

A Algorithms

Note, we will only write $\text{QUERY}(D_{\text{ref}}, K)$ and $\text{QUERY}(D_{\text{SNP}}, K)$ to represent queries in D_{ref} and D_{SNP} , respectively; J_{ref} and J_{SNP} are implied.

Input: R Output: D_{ref} $D_{\text{ref}} \leftarrow \{\}$; for $i \in \{1, 2, ..., \text{length}(R) - k + 1\}$ do D_{ref} append $((R[i : i+k], i));$ {append (k-mer, index) tuple} sort(D_{ref}); {sort by $\xi(k{\text{-mer}})$ } uniq(D_{ref}); {only keep one instance of each k-mer (which to keep is unimportant)} return D_{ref} ;

Algorithm S.1: Generation of reference dictionary D_{ref} from reference sequence R.

Input: D_{ref} Output: J_{ref} $J_{\text{ref}} \leftarrow [0, 0, \dots, 0] \in \mathbb{N}^{2^{32}}$; {for simplicity, assume J_{ref} is 0-indexed} $u_{\text{prev}} \leftarrow 0;$ for $i \in \{1, 2, \ldots, \text{length}(D_{\text{ref}})\}\$ do $K, V \leftarrow D_{\text{ref}}[i]; \{K \text{ is the 32-mer}, V \text{ is its index in the reference}\}\$ $u \leftarrow (\xi(K) \gg 32);$ if $u \neq u_{\text{prev}}$ then for $j \in \{u_{\text{prev}} + 1, u_{\text{prev}} + 2, \dots, u\}$ do $J_{\text{ref}}[j] \leftarrow i;$ $u_{\text{prev}} \leftarrow u;$ for $i \in \{u_{\text{prev}} + 1, u_{\text{prev}} + 2, \dots, 2^{32} - 1\}$ do $J_{\text{ref}}[i] \leftarrow \text{length}(D_{\text{ref}}) + 1;$ return J_{ref} ;

Algorithm S.2: Generation of secondary hash table J_{ref} from reference dictionary D_{ref} .

[∗]Corresponding author: bab@mit.edu

Figure S.1: Simplified visualization of querying D_{ref} with some 32-mer. The encoded 32-mer has high bits A (red) and low bits B (blue). We look into J_{ref} at indices A and $A+1$ to obtain the bounds for our search in D_{ref} . Then, since D_{ref} is sorted by the numerical values of the encoded 32-mers, we perform a binary search on this interval for the 32-mer whose encoding has low bits B. Since all 32-mers in the interval have high bits A (by design of J_{ref}), once we find an encoding with low bits B, we know we have found our initial 32-mer in the dictionary.

```
Input: D_{\text{ref}}, J_{\text{ref}}, KOutput: QUERY(D_{\text{ref}}, J_{\text{ref}}, K)
  u \leftarrow \lfloor \xi(K)/2^{32} \rfloor;a \leftarrow J_{\text{ref}}[u];if a > \text{length}(D_{\text{ref}}) then
     return Null;
  if u < 2^{32} then
     b \leftarrow J_{\text{ref}}[u+1];else
     b \leftarrow \text{length}(D_{\text{ref}}) + 1;return D_{ref}[a:b].bsearch(K); {binary search from a (inclusive) to b (exclusive)}
```
Algorithm S.3: Querying of D_{ref} with some 32-mer K.

Input: D_{SNP} Output: P $P \leftarrow \text{Array}(\text{length} = \max \{V \text{index} : (K, V) \in D_{SNP}\});$ for $(K, V) \in D_{\text{ref}}$ do $p \leftarrow V$.index; $P[p]$.ref_allele ← V.ref_allele; $P[p]$.alt_allele ← V.alt_allele; $P[p]$.ref_allele_freq $\leftarrow V$.ref_allele_freq; $P[p]$.alt_allele_freq \leftarrow V.alt_allele_freq; $P[p].\alpha \leftarrow 0;$ $P[p].\beta \leftarrow 0;$ return P


```
Input: D_{\text{ref}}, D_{\text{SNP}}, QOutput: TARGET(D_{ref}, D_{SNP}, Q)indices \leftarrow Array();
kmers \leftarrow Array();for (K, \text{offset}) \in \mathcal{S}(Q) do
   for K' \in \mathcal{N}(K) do
       V_1 \leftarrow \text{QUERY}(D_{\text{ref}}, K');V_2 \leftarrow \text{QUERY}(D_{\text{SNP}}, K');if V_1 \neq Null then
         indices.append(V_1 - \text{offset});
          kmers.append((K', V_1 - offset));if V_2 \neq Null then
         indices.append(V_2.index – offset);
          kmers.append((K', V_2.index - offset));target \leftarrow highest\_multiplicity\_element(indices);return (target, kmers);
```
Algorithm S.5: Finding target index in reference sequence at which read likely originated. Assume "highest multiplicity element" returns the element of highest multiplicity in its argument array if said element is unique and has multiplicity greater than one, and returns Null otherwise. This can, in practice, be implemented in linear runtime using a hash table that maps indices to frequencies.

Note that, in Algorithm [S.5,](#page-2-0) we must always check the following two conditions for each k -mer $K' \in \mathcal{N}(K)$ that we query before adding the results of this query to our array of potential target indices:

- Based on the results of the D_{ref} query, K' must not: differ from K in a position where there exists a SNP and have the alternate allele for that SNP.
- Based on the results of the D_{SNP} query, K' must not: differ from K in a position where there exists a SNP and have the reference allele for that SNP.

These two conditions prevent us from changing what is actually the alternate allele of a SNP in a read to the reference allele (via $\mathcal{N}(K)$) and incorrectly obtaining a successful query result in D_{ref} , or vice versa for D_{SNP} .

```
Input: D_{\text{ref}}, D_{\text{SNP}}, Q, POutput: –
 target, kmers \leftarrow \text{TARGET}(D_{\text{ref}}, D_{\text{SNP}}, Q);for (K, normalized index) \in kmers do
    if normalized index = target then
       for i \in \{1, 2, ..., k\} do
          if P[target + i − 1] \neq Null then
              if K[i] = P[\text{target} + i - 1].ref_allele then
                 P[\text{target} + i - 1] \cdot \alpha \leftarrow P[\text{target} + i - 1] \cdot \alpha + 1;else if K[i] = P[\text{target} + i - 1].alt_allele then
                 P[\text{target} + i - 1] \cdot \beta \leftarrow P[\text{target} + i - 1] \cdot \beta + 1;
```
Algorithm S.6: Updating pileup table for read Q.

B Full Experiment Timings

Table S.1: Full LAVA timing results compared to other genotyping pipelines, corresponding to Fig. 4 in the main text. All times are given in minutes.

Method	Mapping	Indexing/Sorting Genotyping		Total Time
$LAVA$ $(dbSNP)$	U	O	294.4	294.4
LAVA $(Affy)$		0	184.8	184.8
LAVA Lite (dbSNP)	$\left(\right)$	0	367.7	367.7
LAVA Lite (Affy)	θ	0	247.0	247.0
Bowtie $2 + mp \leq (dbSNP)$	781.3	68.6	446.1	1296.0
Bowtie $2 + mp \leq (Affy)$	781.3	68.6	446.1	1296.0
$BWA + mpileup$ (dbSNP)	1193.9	68.6	437.5	1700.0
$BWA + mpileup (Affy)$	1193.9	68.6	437.5	1700.0
Bowtie $2 + GATK$ HC (dbSNP)	781.3	0	456.1	1237.4
Bowtie $2 + GATK HC (Affy)$	781.3	0	211.8	993.1
$BWA + GATK HC$ (dbSNP)	1193.9	0	585.7	1779.6
$BWA + GATK HC (Affy)$	1193.9	0	223.9	1417.8
$SNAP + GATK HC$ (dbSNP)	129.2	43.5	816.4	989.1
$SNAP + GATK HC (Affy)$	129.2	43.5	227.4	400.1