
Supplementary Materials for Fast genotyping of known
SNPs through approximate k-mer matching

Ariya Shajii, Deniz Yorukoglu, Y. William Yu, & Bonnie Berger∗

A Algorithms

Note, we will only write QUERY(Dref , K) and QUERY(DSNP, K) to represent queries in Dref and
DSNP, respectively; Jref and JSNP are implied.

Input: R
Output: Dref

Dref ← {};
for i ∈ {1, 2, . . . , length(R)− k + 1} do
Dref .append((R[i : i+ k], i)); {append (k-mer, index) tuple}

sort(Dref); {sort by ξ(k-mer)}
uniq(Dref); {only keep one instance of each k-mer (which to keep is unimportant)}
return Dref ;

Algorithm S.1: Generation of reference dictionary Dref from reference sequence R.

Input: Dref

Output: Jref
Jref ← [0, 0, . . . , 0] ∈ N232 ; {for simplicity, assume Jref is 0-indexed}
uprev ← 0;
for i ∈ {1, 2, . . . , length(Dref)} do
K,V ← Dref [i]; {K is the 32-mer, V is its index in the reference}
u← (ξ(K)� 32);
if u 6= uprev then
for j ∈ {uprev + 1, uprev + 2, . . . , u} do
Jref [j]← i;

uprev ← u;
for i ∈ {uprev + 1, uprev + 2, . . . , 232 − 1} do
Jref [i]← length(Dref) + 1;

return Jref ;

Algorithm S.2: Generation of secondary hash table Jref from reference dictionary Dref .

∗Corresponding author: bab@mit.edu



A B

0 1 · · · A A+ 1 · · · 232 −
1

· · · C D B E F · · ·

Jref :

Dref :

Binary search to find B

Figure S.1: Simplified visualization of querying Dref with some 32-mer. The encoded 32-mer has high bits
A (red) and low bits B (blue). We look into Jref at indices A and A+1 to obtain the bounds for our search
in Dref . Then, since Dref is sorted by the numerical values of the encoded 32-mers, we perform a binary
search on this interval for the 32-mer whose encoding has low bits B. Since all 32-mers in the interval
have high bits A (by design of Jref), once we find an encoding with low bits B, we know we have found
our initial 32-mer in the dictionary.

Input: Dref , Jref , K
Output: QUERY(Dref , Jref , K)
u← bξ(K)/232c;
a← Jref [u];
if a > length(Dref) then
return Null;

if u < 232 then
b← Jref [u+ 1];

else
b← length(Dref) + 1;

return Dref [a : b].bsearch(K); {binary search from a (inclusive) to b (exclusive)}
Algorithm S.3: Querying of Dref with some 32-mer K.

2



Input: DSNP

Output: P
P ← Array(length = max {V.index : (K,V ) ∈ DSNP});
for (K,V ) ∈ Dref do
p← V.index;
P [p].ref allele← V.ref allele;
P [p].alt allele← V.alt allele;
P [p].ref allele freq← V.ref allele freq;
P [p].alt allele freq← V.alt allele freq;
P [p].α← 0;
P [p].β ← 0;

return P

Algorithm S.4: Initialization of P .

Input: Dref , DSNP, Q
Output: TARGET(Dref , DSNP, Q)

indices← Array();
kmers← Array();
for (K, offset) ∈ S(Q) do
for K ′ ∈ N (K) do
V1 ← QUERY(Dref , K

′);
V2 ← QUERY(DSNP, K

′);
if V1 6= Null then

indices.append(V1 − offset);
kmers.append((K ′, V1 − offset));

if V2 6= Null then
indices.append(V2.index− offset);
kmers.append((K ′, V2.index− offset));

target← highest multiplicity element(indices);
return (target, kmers);

Algorithm S.5: Finding target index in reference sequence at which read likely originated. Assume “high-
est multiplicity element” returns the element of highest multiplicity in its argument array if said element
is unique and has multiplicity greater than one, and returns Null otherwise. This can, in practice, be
implemented in linear runtime using a hash table that maps indices to frequencies.

Note that, in Algorithm S.5, we must always check the following two conditions for each k-mer
K ′ ∈ N (K) that we query before adding the results of this query to our array of potential target
indices:

• Based on the results of the Dref query, K ′ must not: differ from K in a position where there
exists a SNP and have the alternate allele for that SNP.

• Based on the results of the DSNP query, K ′ must not: differ from K in a position where there
exists a SNP and have the reference allele for that SNP.

3



These two conditions prevent us from changing what is actually the alternate allele of a SNP in a
read to the reference allele (via N (K)) and incorrectly obtaining a successful query result in Dref ,
or vice versa for DSNP.

Input: Dref , DSNP, Q, P
Output: –

target, kmers← TARGET(Dref , DSNP, Q);
for (K, normalized index) ∈ kmers do
if normalized index = target then
for i ∈ {1, 2, . . . , k} do
if P [target + i− 1] 6= Null then
if K[i] = P [target + i− 1].ref allele then
P [target + i− 1].α← P [target + i− 1].α + 1;

else if K[i] = P [target + i− 1].alt allele then
P [target + i− 1].β ← P [target + i− 1].β + 1;

Algorithm S.6: Updating pileup table for read Q.

B Full Experiment Timings

Table S.1: Full LAVA timing results compared to other genotyping pipelines, corresponding to Fig. 4 in
the main text. All times are given in minutes.

Method Mapping Indexing/Sorting Genotyping Total Time
LAVA (dbSNP) 0 0 294.4 294.4
LAVA (Affy) 0 0 184.8 184.8
LAVA Lite (dbSNP) 0 0 367.7 367.7
LAVA Lite (Affy) 0 0 247.0 247.0
Bowtie 2 + mpileup (dbSNP) 781.3 68.6 446.1 1296.0
Bowtie 2 + mpileup (Affy) 781.3 68.6 446.1 1296.0
BWA + mpileup (dbSNP) 1193.9 68.6 437.5 1700.0
BWA + mpileup (Affy) 1193.9 68.6 437.5 1700.0
Bowtie 2 + GATK HC (dbSNP) 781.3 0 456.1 1237.4
Bowtie 2 + GATK HC (Affy) 781.3 0 211.8 993.1
BWA + GATK HC (dbSNP) 1193.9 0 585.7 1779.6
BWA + GATK HC (Affy) 1193.9 0 223.9 1417.8
SNAP + GATK HC (dbSNP) 129.2 43.5 816.4 989.1
SNAP + GATK HC (Affy) 129.2 43.5 227.4 400.1

4


	Algorithms
	Full Experiment Timings

