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1 Online Methods

Overview of Methods

We provide a brief overview of the method here. Those interested in more
details should consult later sections.

As in the main paper, assume D is the set of participants in our study.
Let d be a given individuals genotype, x = (x1, . . . , xm) the number of times
each minor allele occurs in our study population. Note that x is equal to 2n
times the minor allele frequency in our study. We know that D is drawn from
some background population, let us call it B, where B consists of N people,
and D consists of n people. For a given individual our privacy measure,
which we denote by PrivMAF(d, x

2n
), is an upper bound on

P
(
d ∈ D̃|d ∈ B̃,MAF(D̃) =

x

2n

)
where D̃ and B̃ are chosen from the same distribution as D and B. The
PrivMAF score for our study is equal to

PrivMAF(D) = max
d∈D

PrivMAF(d,MAF(D))

In order to calculate PrivMAF we use the equation

PrivMAF(d,
x

2n
) ≈ 1

1 + (N−n)Pn(x)
nPn−1(x−d)

where

Pn(x) =
m∏
i=1

(
2n

xi

)
pxii (1− pi)2n−xi

This measure can be extended to measure the amount of privacy given by
perturbing the MAF (see below).

Basic Model

Before describing the model underlying our results we want to motivate it.
Often the size of an underlying population is so large compared to that of the
study population that we might as well consider the underlying population
to be infinite (consider for example the population of all people of English
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ancestry versus the participants in the British Birth Cohort). In practice,
however, it might be that we know the study participants are drawn from
some smaller subpopulation (for example the British Birth Cohort is drawn
from the population of all children born in Britain during a certain week
in 1958). This subpopulation is small enough that we can not consider it
infinite. Therefore we can think of our study population as being generated
by first generating this smaller subpopulation out of an infinite background
population, then choosing the study participants out of this smaller popula-
tion. This is the point of view our model takes, and it is formally described
below.

It is worth noting that, breaking with standard notation, we assume all
sets are ordered and can have repetitions.

Assume that the genotypes of study participants are drawn from some
theoretical infinite population. We have m SNPs, which we label with
1, . . . ,m, each of which is independent of the others. Let pi be the mi-
nor allele frequency of the ith SNP in our infinite population, and assume
our population is in Hardy-Weinberg (H-W) Equilibrium. We first produce
a small background population B = {b1, · · · , bN} where each bj ∈ {0, 1, 2}m
(B is the finite set of people who in reality might have participated in the
study), and where each member of the population is generated independently
of the others. Our study population, denoted D = {z1, · · · , zn}, is a pop-
ulation of size n produced from the background population by choosing n
members of B uniformly at random with no repetitions (note, since B can
have repetitions in it, it is possible to have zi = zj even if i 6= j. This is
because it is possible to have k 6= l so that bk = bl.). It is worth noting that
the marginal probability distribution on D is exactly the same as the prob-
ability distribution we would get by generating D directly from the infinite
population.

PrivMAF

Let MAFi(D) be the minor allele frequency of the ith SNP in our population
D. We want to release x

2n
= MAF(D) = (MAF1(D), . . . ,MAFm(D)) (where

xi =
∑
d∈D

di is the number of times the minor allele occurs at SNP i in our

study population). To simplify notation let x(D) = 2nMAF(D). We want
some kind of measure of how much privacy is lost by each study participant
after releasing MAF(D). We achieve this goal by measuring the probability
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that an individual participated in the study given the data released. For a
given individual d we want to calculate how likely it is under our model that
d is in D given x(D). Note that (in practice) we know that d ∈ B (that is to
say if an adversary is trying to figure out if d ∈ D they already know d ∈ B),
so what we want to calculate is the probability that d is in D conditional on
d being in B and on x equaling x(D). More formally, we want to consider:

P (d ∈ D̃|d ∈ B̃, x(D̃) = x)

where D̃ and B̃ have the same distribution as D and B. We would like to
devise a formula to calculate an upper bound on this probability. First we
need to build a few tools.

We can write D = {z1, . . . , zn} and D = {z̃1, . . . , z̃n}.
Let B̃ − D̃ be the set of all people in B̃ who are not in D̃. Note B̃ − D̃

and D̃ are independent random variables, so

P (d ∈ B̃, d /∈ D̃|x(D̃) = x) = P (d ∈ B̃ − D̃|x(D̃) = x)P (d /∈ D̃|x(D̃) = x)

= P (d ∈ B̃−D̃)P (d /∈ D̃|x(D̃) = x) = P (d ∈ B̃−D̃)(1−P (d ∈ D̃|x(D̃) = x))

We also see, since d ∈ D̃ implies d ∈ B̃, that

P (d ∈ D̃, d ∈ B̃|x(D̃) = x) = P (d ∈ D̃|x(D̃) = x)

Using Bayes’ rule and some algebra we see that

P (d ∈ D̃|d ∈ B̃, x(D̃) = x) =
P (d ∈ D̃, d ∈ B̃|x(D̃) = x)

P (d ∈ D̃|x(D̃) = x) + P (d ∈ B̃, d /∈ D̃|x(D̃) = x)

=
P (d ∈ D̃|x(D̃) = x)

P (d ∈ D̃|x(D̃) = x) + P (d ∈ B̃ − D̃)(1− P (d ∈ D̃|x(D̃) = x))

=
1

1 + P (d ∈ B̃ − D̃)( 1
P (d∈D̃|x(D̃)=x)

− 1)
(1)

The next step is to consider P (d ∈ D̃|x(D̃) = x). This equals

1−P (d /∈ D̃|x(D̃) = x) = 1−
n∏
i=1

P (d 6= z̃i|x(D̃) = x) = 1−(1−P (d = z̃1|x(D̃) = x))n
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Then note that

P (d = z̃1|x(D) = x) =
P (d = z̃1, x(D̃) = x)

P (x(D̃) = x)

=
P (d = z̃1, x(z̃2, · · · , z̃n) = x− d)

P (x(D̃) = x)

=
P (d = z̃1)P (x(z̃2, · · · , z̃n) = x− d)

P (x(D̃) = x)
(2)

Let Pn(x) = P (x(D̃) = x); then equation 2 equals

= P (d = z̃1)
Pn−1(x− d)

Pn(x)

Substituting this in to equation 1 we get that

P (d ∈ D̃|d ∈ B̃, x(D̃) = x) =
1

1 +

(
P (d∈B̃−D̃)

1−
(
1−P (d=z̃1)

Pn−1(x−d)
Pn(D̃)

)n
)
− P (D̃ ∈ B̃ − D̃)

Using the fact that (1− z)n ≥ 1−nz when 0 ≤ z ≤ 1 (this follows from
the inclusion exclusion principle) we get that

≤ 1

1− P (d ∈ B̃ − D̃) + P (d∈B̃−D̃)(Pn(x))
nP (d=z̃1)Pn−1(x−d)

= PrivMAF(d,MAF(D))

It is worth mentioning that the above upper bound is likely to be fairly
tight, since z = P (d = z̃1|x(D̃) = x), which in practice is likely to be very
small (especially when the data set is anywhere near being safe to release,
since P (d = z̃1|x(D̃) = x) ≤ P (d = z̃1|d ∈ B̃, x(D̃) = x)).

This quantity, PrivMAF(d,MAF(D)), is our measure of privacy.
Note that for realistic choices of n, N , p and m we get that P (d ∈ B̃−D̃)

is approximately equal to (N − n)P (d = z̃1) and that P (d ∈ B̃ − D̃) << 1,
so 1− P (d ∈ B̃ − D̃) ≈ 1. Plugging this in we get the measure

PrivMAF(d,MAF(D)) ≈ 1

1 + (N−n)Pn(x)
nPn−1(x−d)
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which is what we use in practice. Moreover, we see that

Pn(x) =
m∏
i=1

(
2n

xi

)
pxii (1− pi)2n−xi

This allows us to calculate PrivMAF(d,MAF(D)) easily.
PrivMAF allows us to determine how much privacy is lost by a particular

individual. What we want is the total privacy loss by releasing a study.
It makes sense to look at maximum loss to any individual in our study,
which is to say max

d∈D
PrivMAF(d,MAF(D)). We call this quantity PrivMAF.

If PrivMAF is bounded above by α then, for any participant d ∈ D, an
adversary can be at most α percent confident that d actually participated in
the study, which is the privacy guarantee we want.

Naively it seems like calculating PrivMAF for m SNPs and n individuals
has complexity O(mn2). By using the cancellation in Pn(x)

Pn−1(x−s) it only ends

up taking O(mn) time, which is asymptotically optimal.

PrivMAF for Data with Noise Added

Note that the above framework can be generalized to measure the privacy
loss present in releasing noisy version of MAF(D). In particular, let η be
some random variable. Then we can let MAF η

j (D) = MAFj(D) +
ηj
2n

, where
η1, . . . , ηm are iid random variables distributed as η. Then we want to mea-
sure how well MAFη(D) preserves privacy. As above, we are interested in
P (d ∈ D̃|MAFη(D̃) = MAFη(D), d ∈ B̃). The same derivation used in the
previous section implies that this probability is upper bounded by:

PrivMAFη(d,MAFη(D)) =

1

1− P (d ∈ B̃ − D̃) + P (d∈B̃−D̃)(P ηn (MAFη(D)))
nP (d=z̃1)P

η
n−1(MAFη(D)−d)

where

P η
n (v) =

m∏
j=1

2n∑
i=0

(
2n

i

)
pij(1− pj)2n−iP (η = 2nvj − i)

Note that the same approximations used in the previous section apply
here. In this paper we will let P (η = i) be chosen proportional to e−ε|i|,
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where i is an integer and ε is a user chosen privacy parameter (relating to
ε-differential privacy guarantees). We can then let

MAFε = MAFη

and
PrivMAFε = PrivMAFη

PrivMAF for Data with Truncation

Similarly we can consider the gain in privacy we get by rounding our MAF.
More specifically, consider k > 1, then ifMAFj(D) =

xj
2n

, we letMAF
trunc(k)
j (D)

be the result of truncating each entry in MAF(D) after k decimal digits. More
formally

MAF
trunc(k)
j (D) =

bMAFj(D) ∗ 10kc
10k

In the below we let v = MAFtrunc(k)(D) to make the equations more read-
able. In order to measure privacy we want to calculate P (d ∈ D̃|MAFtrunc(k)(D̃) =
v, d ∈ B̃). As above, we can upper bound this by

1

1− P (d ∈ B̃ − D̃) + P (d∈B̃−D̃)
nP (d=z̃1)

P (MAFtrunc(k)(D̃)=v)

P (MAFtrunc(k)(D̃)=v|d=z̃1)

= PrivMAFtrunc(k)(d,MAFtrunc(k)(D))

Note

P (MAFtrunc(k)(D̃) = v) =
m∏
j=1

P (MAF
trunc(k)
j (D̃) = vj)

and

P (MAFtrunc(k)(D̃) = v|d = z̃1) =
m∏
j=1

P (MAF
trunc(k)
j (D̃) = vj|d = z̃1)

If Sk(vj) = {x| x
2n

truncates to vj}, then

P (MAF
trunc(k)
j (D̃) = vj) =

∑
i∈Sk(vj)

(
2n

i

)
pij(1− pj)2n−i
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and

P (MAF
trunc(k)
j (D̃) = vj|d = z̃1) =

∑
i∈Sk(vj)

(
2n− 2

i− dj

)
pij(1− pj)2n−i+dj−2

This allows us to calculate PrivMAFtrunc(k)(d,MAF
trunc(k)
j (D)), just as

we wanted.

Comparison to previous approaches

Our approach is the first to give privacy guarantees for all individuals in a
study. The method endorsed by Sankararaman et al. [3] provides guarantees
of a sort– since the log likelihood test gives the best power for a given false
positive ratio, it ensures that the power of any test can not be too big. The
problem with their guarantee is that it is an aggregate guarantee, and does
not ensure the safety of all participants. Our approach, on the other hand,
does ensure privacy for all involved. Our method also takes into account
the size of the pool from which our study is drawn, something the likelihood
approach does not take into account but which is important in measuring
privacy. The PPV approach suggested by Craig et al. [4] does take the
background population size into account, but again does not come with any
privacy guarantees that hold for all participants. We also believe that our
method gives a more intuitive measure of privacy than previous ones (though
of course this is subjective). One might argue that the difference between
the worse case and average case privacy loss are not that different, but our
experiments do not seem to support this claim (see, for example, Fig S1 that
compares the value of maxd∈D PrivMAF(d,MAF(D)) for a random choice of
D with the worse case value.)

Zhou, et al. [5] have also presented work with strong privacy guarantees;
however, they examined the frequency and likelihood of pairs of alleles rather
than MAF. Moreover, they give guarantees of a combinatorial nature (using
k-anonymity), where as ours are probabilistic in nature.
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A Release Mechanism: Allele Leakage Guarantee Test

Motivation

As mentioned in the paper, we want to use the above measure to decide if
it is safe to release MAF(D) (Note that we could do something similar for
perturbed MAF, but do not do so here). Assume we want to bound the
probability of an adversary figuring out if someone took part in the study to
be at most α, where 0 < α < 1. A first guess at how to do this might be to
look at PrivMAF, and release if and only if it is at most α.

Though in practice this approach seems to work well, in theory we can
have trouble. The problem with this approach is that the decision of whether
or not to release gives away a little information about D and thus destroys
our probability guarantees (to understand why this is note that deciding to
release if and only if PrivMAF is less than α means that any data being
released gives away two pieces of information, namely the value of MAF and
the fact that PrivMAF is less than α. If PrivMAF is greater than α with
non-negligible probability (say 50 percent probability or so) this extra bit of
information can actually be very informative).

An obvious fix is to release if and only if max
d∈{0,1,2}m

PrivMAF(d,MAF(D)) ≤

α. In this case the decision of whether or not to release gives no more infor-
mation than outputting MAF(D) by itself. It turns out that this quantity
is easy to calculate, and gives us the security guarantee we want. Unfortu-
nately it is also overkill: the worst-case behavior is often much worse than
the average case, so this policy is likely to tell us a data set is not safe to
release even when it is (see Fig S1).

This leads us to propose another solution. For any choice of β we can
define

Pβ = P (max
d∈D̃

PrivMAF(d,MAF(D̃)) ≤ β|x(D̃) = x)

where the probability is taken over the choice of D̃. Choose β so that

α ≥ 1

1 +
Pβ
β
− Pβ −maxd∈{0,1,2}m P (d ∈ B̃ − D̃)

and release the data if and only if PrivMAF(D) is less than or equal to β.
This release test is what is referred to as the Allele Leakage Guarantee Test
(ALGT) in the paper. We can show that ALGT gives us the privacy we
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require without too much overkill. On the other hand it is much slower than
the above methods, since calculating Pβ is slow (described below).

Derivation

ALGT tells us that, given both MAF(D) and the knowledge leaked by the
decision to release, then from the adversaries view the probability that d ∈ D
is at most α for any choice of d ∈ D. More formally:

Theorem 1. Choose β as above. Then, if PrivMAF(D) ≤ β, for any choice
of d ∈ D we get that

P

(
d ∈ D̃|d ∈ B̃, x(D̃) = x,max

d̃∈D̃
PrivMAF(d̃,MAF(D̃)) ≤ β

)
≤ α

Proof. The proof basically comes down to repeated applications of the def-
inition of conditional probability, independence, and Bayes rule. Let R be
the event that max

i=1,...,n
PrivMAF(z̃i,MAF(D̃)) ≤ β. Then

P (d ∈ D̃|d ∈ B̃, x(D̃) = x,max
d̃∈D

PrivMAF(d̃,MAF(D̃)) ≤ β) =
P (d ∈ D̃|x(D̃) = x,R)

P (d ∈ B̃|x(D̃) = x,R)

=
P (d ∈ D̃|x(D̃) = x,R)

P (d ∈ D̃|x(D̃) = x,R) + P (d ∈ B̃ − D̃)(1− P (d ∈ D̃|x(D̃) = x,R))

=
1

1 + P (d∈B̃−D̃)

P (d∈D̃|x(D̃)=x,R)
− P (d ∈ B̃ − D̃)

(3)

To simplify this note that

P (d ∈ D̃|x(D̃) = x,R)

P (d ∈ B̃ − D̃)
=
P (R, d ∈ D̃|x(D̃) = x)

P (d ∈ B̃ − D̃)Pβ

≤ P (d ∈ D̃|x(D̃) = x)

P (d ∈ B̃ − D̃)Pβ
≤ PrivMAF(d,MAF(D))P (d ∈ B̃|x(D̃) = x)

P (d ∈ B̃ − D̃)Pβ

To simplifying this we look at P (d∈B̃|x(D̃)=x)

P (d∈B̃−D̃)
, which we see equals
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=
P (d ∈ D̃|x(D̃) = x) + P (d ∈ B̃ − D̃)(1− P (d ∈ D̃|x(D̃) = x))

P (d ∈ B̃ − D̃)

= 1 +
P (d ∈ D̃|x(D̃) = x)(1− P (d ∈ B̃ − D̃))

P (d ∈ B̃ − D̃)

Using the fact that P (d ∈ B̃ − D̃) = P (d ∈ B̃ − D̃|x(D̃) = x) this becomes

= 1+
P (d ∈ D̃|x(D̃) = x)(1− P (d ∈ B̃ − D̃))

P (d ∈ B̃|x(D̃) = x)− P (d ∈ D̃|x(D̃) = x) + P (d ∈ D̃|x(D̃) = x)P (d ∈ B̃ − D̃)

= 1+
P (d ∈ D̃|d ∈ B̃, x(D̃) = x)(1− P (d ∈ B̃ − D̃))

1− P (d ∈ D̃|d ∈ B̃, x(D̃) = x) + P (d ∈ D̃|d ∈ B̃, x(D̃) = x)P (d ∈ B̃ − D̃)

≤ 1 +
PrivMAF(d,MAF(D))(1− P (d ∈ B̃ − D̃))

1− PrivMAF(d,MAF(D)) + PrivMAF(d,MAF(D))P (d ∈ B̃ − D̃)

= 1+
1

1
(1−P (d∈B̃−D̃))PrivMAF(d,MAF(D))

− 1
≤ 1+

1
1

PrivMAF(d,MAF(D))
− 1
≤ 1+

1
1
β
− 1

Substituting this in to equation 3 results we get

P (d ∈ D̃|x(D̃) = x,R)

P (d ∈ B̃ − D̃)
=

PrivMAF(d,MAF(D))

Pβ
(1+

1
1

(1−P (d∈B̃−D̃))PrivMAF(d,MAF(D))
− 1

)

≤ PrivMAF(d,MAF(D))

Pβ
(1+

1
1

PrivMAF(d,MAF(D))
− 1

) ≤ PrivMAF(d,MAF(D))

Pβ
(1+

1
1
β
− 1

)

Putting it all together we see that

P (d ∈ D̃|d ∈ B̃, x(D̃) = x,R) ≤ 1

1 + 1
PrivMAF(d,MAF(D))

PR
(1+ 1

1
β
−1

)
− P (d ∈ B̃ − D̃)

=
1

1− P (d ∈ B̃ − D̃) +
Pβ
β
− Pβ

≤ 1

1 +
Pβ
β
− Pβ −maxd∈{0,1,2}m P (d ∈ B̃ − D̃)

≤ α

which is what we wanted.
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Note that, in practice, since max
d∈{0,1,2}m

P (d ∈ B̃− D̃) << 1, we choose an

approximate β such that

α ≥ 1

1 +
Pβ
β
− Pβ

Comparing β to α

To justify our release test ALGT, we compared the naive threshold, α, to
the corrected threshold, β (Fig. S6). For larger values of α we see that the
two thresholds are fairly close. As α decreases, however, the two quantities
start to diverge, with the corrected threshold decreasing much faster than
the naive one. Moreover, we see that when α is roughly 0.04, β suddenly
drops to around 0 and remains at that level for all smaller α– this behavior
is due to the negligible probability that a study population would have an
PrivMAF less than .04 given this choice of parameters. This suggests that,
in most cases, using α instead of β will not reduce privacy by too much.

Example Application of ALGT

Suppose that the Wellcome Trust wants to publicly release aggregate MAF
statistics to facilitate researchers timely data access. Our test can be used
to determine whether or not it is safe to do so. Below, we work through an
example to better illustrate the details of our method and how it might be
used in practice.

As above we start by choosing a set of 1000 participants in the British
Birth Cohort–this is our study population. In order to calculate our pop-
ulation parameters we use the remaining 500 individual‘s to estimate the
background populations minor allele frequency (in practice these individ-
ual‘s can be taken from HapMap or some similar data source). The first step
is to estimate N , the size of the population from which our study is drawn.
Assume our study is known to be drawn from the population of a city con-
sisting of 100000 people; then we can choose N = 100000. Note this might be
an overly optimistic choice of N– other information might be known about
the study participants that makes N smaller–, but for simplicity we decide
to use this value.

We would like to release the MAFs for 200 of the SNPs, but we only
want to do so if the probability that d ∈ D based on the publicly available
data is at most 20% (note that 20% is a reasonable choice, as practitioners of
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k-anonymity are often advised to use k = 5 [1], which can be seen as corre-
sponding to 20% in this context). This selection corresponds to us choosing
α = .2. For the practitioner using our tool, the choice of the security pa-
rameter α, which quantifies the risk of re-identification, is dependent on the
context– α should be set based on the level of harm that can result from
determining if a given individual is in a study (perhaps using a framework
similar to the one proposed by [2] for setting parameters in differential pri-
vacy.) Applying our method, we determine a stricter threshold of β = .196.
Note that in this case the adjustment to our threshold α is very small. In
general, however, it can be much larger. Applying PrivMAF to our study
cohort gives us a score of .177. Since this is less than β we can release the
study participants MAF while still preserving privacy at the level required.

Scalability of ALGT

We have presented results on moderate-sized datasets. We have also run
our algorithm on larger artificial datasets (with 10,000 individual‘s and 1000
SNPs) and have found our ALGT implementation still runs in a reasonable
amount of time, completing in just over 8 hours on a single core (Methods).
Although our current implementation runs on a single core, the PrivMAF
framework permits parallelization of Monte Carlo sampling, the major com-
putational bottleneck in our pipeline, i.e. computing β, and thus is able to
benefit from any parallel or distributed computing system. As dataset sizes
grow, we expect to be able to keep pace by computing the PrivMAF statistic
more efficiently.

Choosing which SNPs to release

Often one would like to release the maximum number of minor allele frequen-
cies that still gives us our privacy guarantee. Unfortunately, doing so can
give away a lot of information about our participants– we need to know the
SNPs we want to release ahead of time. Therefore we suggest choosing the m
SNPs we want to release by choosing a set of SNP so that Pβ is large (almost
1). This approach preserves the privacy guarantee and makes it very likely
that the user will get to release their data set to the public (the probability of
not being able to release it is 1− Pβ). Alternatively we can use the measure

max
d∈{0,1,2}m

PrivMAF(d,MAF(D)) to decide if we want to release our SNPs or

not, in which case we can choose the largest set of SNPs possible without
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giving up our privacy guarantee. It is plausible that there are other ways of
picking m as well.

Estimating Pβ

Unfortunately, Pβ = P (PrivMAF(D) ≤ β|x(D) = x) is not so easy to calcu-
late. We use a Monte Carlo type approach to calculate it. More precisely we
sample D conditional on x(D) = x, then estimate Pβ as being the percentage
of the D we generated for which max

d∈D
PrivMAF(d,MAF(D)) ≤ β.

This approach requires us to be able to sample D such that x(D) = x.
In order to do this consider ti = #{j|zj,i = 2}, where zj,i is the genotype of
zj at SNP i. Then the probability that ti = t is proportional to(

n

t

)(
n− t

n+ t− xi

)
p2ti (2pi(1− pi))xi−2t(1− pi)2(n+t−xi)

where we hold to the convention that
(
n
m

)
= 0 if n ≤ 0, m < 0 or n < m. This

allows us to sample from ti. Knowing ti we can then calculate the number
of j so that zj,i = 1 (namely xi − 2ti) and the number that equal 0 (namely
n + ti − xi). We can then randomly choose ti individuals to have zj,i = 2,
and similarly for zj,i = 1 and zj,i = 0. Repeating this process for all of the
SNPs gives us a random sample of D conditional on x(D) = x.

Of course Monte Carlo estimation is often very slow. What alternatives

do we have? One is to note that, if M = log
(

n
N−n( 1

PrivMAF(z1,
x
2n

)
− 1)

)
then

(conditional on x(D) = x) as m goes to infinity we get that (under reasonable
assumptions, such as a MAF ≥ .05, n fixed)

M − EM√
var(M)

⇒ χ

where EM is the expected value of M , var(M) is its variance (both of which
we can calculate), and χ is a unit normal centered at 0. This result follows
from considering the distribution, Q, on the pairs xi, pi. Using the Central
Limit Theorem, it is straightforward to show the result holds when Q has
finite support. One can then use a limiting argument to show it holds for
more general Q (we do not include the detail here). This fact gives us a
means of estimating P (PrivMAF(d1,MAF(D)) ≤ β|x(D) = x), which can
then be used to estimate Pβ
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Unfortunately this is only an asymptotic bound, and experiments show
that it often gives poor estimates in practice, so we have chosen not to use it
in practice. It can be hoped, however, that more robust approximations are
possible to speed up this calculation.

Approximating β

Calculating β can be quite time consuming, so one might be tempted to try
to avoid calculating β. One way to do this could be to use α instead of β.
Experiments on simulated datasets show that there is some β0 so that if α is
above β0 then β is about equal to α, while below β0 we see β quickly decays to
0 (this can be seen, for example, in Fig S6). This implies that, if PrivMAF is
significantly below α (where we do not attempt to define significantly below
here), then we should expect β to be close to α, so PrivMAF should be below
β as well. This is a heuristic, but this line of reasoning seems like it could
lead to something more reliable– more work is needed to know for sure.

Estimating the parameters

The above model require estimates of the pi. How are they estimated? The
straightforward method is to take another collection of individuals (our refer-
ence population) drawn from the same background population as our study
participants. The minor allele frequencies of this population can then serve
as an estimate of the minor allele frequencies for the background population.
Alternatively, we can estimate the pi parameters from the union of this col-
lection of individuals with the study participants, a method advocated by
some previous papers.

An alternative approach is to use Bayesian methods to place a prior on
pi, which can then be updated based on the data in the outside population.
We can then use this posterior probability on pi to estimate P (xi(D) = xi).
In our results we used the naive approach, though arguments can be made
for the other two.

The other parameter that one must consider is N , the size of the back-
ground population. This depends a lot on the context, and giving a realistic
estimate of it is critical. In most applications the background population from
which the study is drawn is fairly obvious. That being said, one needs to be
careful of any other information released in the paper about participants–
just listing a few facts about the participants can greatly reduce N , greatly
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reducing the bounds on privacy guarantees (since the probability of a privacy
compromise is roughly inversely proportional to N − n).

Changing the Assumptions

The above model makes a few assumptions (assumptions that are present in
all previous work that we are aware of, with one exception [5]). In particu-
lar it assumes that there is no linkage disequilibrium (LD) (which is to say
that the SNPs are independently sampled), that the genotypes of individu-
als are independent of one another (that there are no relatives, population
stratification, etc. in the population), and that the background population
is in Hardy-Weinberg Equilibrium (H-W Equilibrium). The assumption that
genotypes of different individuals are independent from one another is dif-
ficult to remove, and we do not consider it here. We can, however, remove
either the assumption of H-W Equilibrium or of SNPs being independent.

First consider the case of H-W Equilibrium. Let us consider the ith
SNP, and let pi be the minor allele frequency. We also let p0,i, p1,i and p2,i
be the probability of us having zero, one, or two copies of the minor allele
respectively. Assuming the population is in H-W equilibrium is the same as
assuming that p0,i = (1 − pi)2, p1,i = 2pi(1 − pi), and p2,i = p2i . Dropping
this assumption, we see that all of the calculations above still hold, except
we get that

P (xi(D̃) = xi) =

bxi
2
c∑

c=0

(
n

c

)(
n− c
xi − 2c

)
pn−xi+c0,i pxi−2c1,i pc2,i

where we use the convention that
(
n
m

)
= 0 when m < 0. This allows us to

remove the assumption of H-W Equilibrium. Unfortunately there are two
problems with this approach. The first is statistical– instead of having to
just estimate one parameter per SNP (pi), we have to estimate two (p0,i and
p1,i, since p2,i can be calculated from the other two). The other problem
is that calculating P (xi(D) = xi) suddenly becomes more computationally
intensive, so much so that it is prohibitive for large data sets.

In order to allow us to drop the assumption of no LD we can model
the genome as a Markov model (you could also use an hidden Markov model
instead which allows for more complex relationships, but for simplicity sake
we will only talk about Markov models since the generalization to HMM is
straightforward). In such a model the state of a given SNP only depends on
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the state of the previous SNP. To specify such a model we need to specify
the probability distribution of the first SNP, and for each subsequent SNP
we need to specify its distribution conditional on the previous SNP. It is then
straightforward to modify our framework to deal with this model. As above,
however, this requires us to estimate lots of parameters and also is much
more time consuming; thus it is not likely to be useful in practice.

Note that the above method assumes our sample is drawn uniformly
from the background population, which has various consequences. Strictly
speaking the above method should not, for example, be naively applied to
case-control studies, only for studies of quantitative traits (this is a weakness
shared with previous approaches). This is for two reasons: first, of all our
measure does not take into account the fact that most case control studies
only release data about SNPs that are highly differentiated between the case
and control groups; second, it does not consider the fact that the case pop-
ulation is not drawn from the general background population, but is instead
drawn from a population of people with the disease. We can overcome these
drawbacks if we have information about the minor allele frequencies of the
SNPs we are looking at in the disease population ahead of time. This is likely
to be possible in follow up studies, but not in a study that looks at a given
disease for the first time.

It should also be mentioned that, in practice, we believe our ALGT
bounds will still hold even if we apply them naively– since the disease pop-
ulation is further from average member of our background population than
most people we expect our method to overestimate how much information is
leaked by releasing the data. This implies that one can use ALGT even in a
case-control framework.

Reidentification Using PrivMAF

Thus far we have presented PrivMAF as a means of helping ensure par-
ticipant privacy. As it turns out, PrivMAF can also be used in exactly the
opposite way, as a means of compromising subjects privacy. To do this choose
some threshold γ. For a given genotype d we predict d ∈ D if and only if
PrivMAF(d,MAF(D)) > γ. Used in this way, our approach performs compa-
rably to previous approaches; we plot the ROC curve of the likelihood ratio
test [3] as well as the ROC curve obtained by using our test statistic (see Fig
S2). We see that both methods perform similarly. Since it is known that the
likelihood ratio test gives the highest power for a given false positive rate of
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any test, this curve suggest that our privacy measure is doing a good job in
terms of measuring how much privacy is lost in a given dataset by releasing
the minor allele frequencies.

Note that we can also use this as a reidentification on perturbed data,
using the perturbed PrivMAF. The results of this analysis are shown in Fig
S3 for truncated data and Fig S4 for data with noise added.
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2 Online Figures

Figure S1: Worst Case Versus Average Case PrivMAF. Graph of
the number of SNPs, denoted m, versus PrivMAF. The green curve is the
PrivMAF for a set of n = 1, 000 randomly chosen participants in the British
Birth Cohort, while the blue curve is the worst case PrivMAF over all possible
choices of our study population conditional on MAF(D) (in other words

max
d∈{0,1,2}m

PrivMAF(d,MAF(D))).
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Figure S2: ROC Curves of PrivMAF and Likelihood Ratio. ROC
curves obtained using PrivMAF (green triangles) and the likelihood ratio
method (red circles) to reidentify individuals in the WTCCC British birth
cohort with n=1,000 study participants and 1,000 SNPs.
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Figure S3: ROC Curves of PrivMAF with Truncation. ROC curves
obtained using PrivMAF for reidentification of unperturbed data (in red,
AUC=.686), data truncated after two decimal digits (aka k = 2, in blue,
AUC=.682), and data truncated after one decimal digit (aka k = 1, in green,
AUC=.605 ). We see that truncation can greatly decrease the effectiveness of
reidentification. Note that the ROC of the unperturbed data here is different
from that in the previous figure. This is because we used a different random
division of our data in each case.
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Figure S4: ROC Curves of PrivMAF with noisy data. ROC curves
obtained using PrivMAF for reidentification of unperturbed data (in red,
AUC=.696), with noise corresponding to ε = .5 (in green, AUC=.693), and
with ε = .1 (in blue, AUC=.656). We see that adding noise can decrease the
effectiveness of reidentification. Note that the ROC of the unperturbed data
here is different from that in the previous figures. This is because we used a
different random division of our data in each case.
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Figure S5: PrivMAF versus background population size. Here we
look at how the background population size, denoted by N and graphed on
the x axis, affects our privacy measure PrivMAF, which is on the y axis.
We see that as the size of the population from which our study is drawn
increases the probability of re-identification decreases sharply. This is done
with n=1000 study participants and m=200 SNPs.
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Figure S6: ALGT applied to the WTCCC dataset. A graph of the un-
corrected threshold, α, versus the corrected threshold, β = β(α), from ALGT
is given in blue. The green line corresponds to an uncorrected threshold. We
see that for some choices of α, correction may be desired. For example, for
α = .05 the corrected threshold is approximately β = .03. Here we again use
the British Birth Cohort with n=1000 study participants, m=1000 SNPs,
and a background population of size N=100,000.
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